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A new method for solving two-point boundary value problems by hnite difference 
methods has been developed. The basis for the method is the observation that local 
truncation errors associated with central difference analogues of the defining differential 
equation become arbitrarily small as the interior node points are arranged in an optimal 
sequence. The method is applied to several examples and comparisons are made with 
other approaches. 

INTRODUCTION 

It long has been recognized that improved accuracy is obtained for such 
numerical procedures as interpolation and differentiation, quadrature, and integra- 
tion of differential equations, when estimates of associated truncation errors are 
included in the solution algorithm [l-3]. Alternatively, improved accuracies can be 
attained by reducing the magnitudes of local truncation errors via reductions in 
mesh spacings between adjacent node points. The purpose of the present contribu- 
tion is to introduce a new method for solving two-point boundary value problems 
which operates on the total truncation error of the difference analogue for the 
differential equation in such manner as to effect an optimal node point distribution. 
In so doing, the set of truncation errors {Ti} associated with successive nodal 
distributions {$)}, where i denotes node index and (k) iteration index, is system- 
atically reduced to zero. The method is shown to be exact for a homogeneous 
linear problem and gives highly accurate results for nonlinear problems. 

The method is applied here to the second-order equation 

U” + P(u, v) u’ + Q<u, v> = 0 (1) 
120 
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with Dirichlet boundary conditions 

u(0) = 0 and u(l) = 1. (2) 

It is required that u and its higher derivatives be continuous on the interval 
0 < y < 1. Results are obtained for several illustrative examples and comparisons 
are made with other approaches. In particular, an approach described by Fox [I] 
is extended so as to include, to any order, evaluations of the local truncation error 
Ti in the solution algorithm for the finite difference equations. 

ANALYSIS 

Introducing 3-point central difference forms for u’ and u”, Eq. (1) may be written 

( 2 )( %+1 - ui 4 - 24 % - s 

12 62 61 

h-1) + pi (* %"s, I ;f2 ,,"i-1) 

+ Ti + Qi = 0 (i = 2, 3 ,..., I), 

where 

62 = Yi+1 - Yi 3 

with y1 = 0, yl+l = 1, and 

6, = yi - yi-1 : 

p, = P@i 7 YJ, 

Pi = Qh 3 ri), 

(3) 

612 = Yi+1 - Y&l (4) 

(5) 

Here, Ti represents the Taylor series terms which remain on extracting ui’ and U: 
from the expressions 
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Equation (3) may be rearranged to give 

l4i = AiUi,] + BiUi-, + ci , 
where 

i = 2, 3 ,..., I, 

Ai = (2/h, + P~SJ~2)lDi > 
Bi = (2/a, - f’~U~~)/D~ 7 
Ci = SlATi + Qi>/Di 9 

Di = (2/6, + P&S, + 2/S, - Pis,/s,). 

From Eq. (5) it is seen that 

Ti = Ti(Yi-l 9 Yi 2 Yi+l) 

and, hence, that 

(6) 

dTi = (aTi/aY,-d 4-l + (aTi/aYi> dY, + (aTi/aY,+d hi+1 * (7) 

The partial derivatives aTJay,-, , aTJay, , aTi/ay,+, are obtained in straight- 
forward fashion from Eq. (5) upon noting that Pi and ujn’ are functions of yi 
only. 

Equations (6) and (7) constitute sets of algebraic equations for which the coeffi- 
cient matrices are tri-diagonal; thus, they yield to efficient solution by means of 
elimination techniques [4]. For computational purposes the series for Ti , Eq. (5), 
is truncated at the Nth term. 

Now, given an initial distribution { yi”} with associated {Tj”}, the problem is one 
of obtaining successive distributions { yi”‘} for which {T,!“} --f (0). These are 
obtained from Eq. (7) which becomes, in explicit difference form, 

-Tjk-l) = ( 2, )('-l' 

The superscript (k) denotes iterate number, iteration being required because the 
set is nonlinear. In order to implement Eq. (S), intermediate values of {ui} and 
{I@‘} are needed. These were obtained as follows: 

(i) Assuming {Tj’“‘} to be zero, {uj”‘} was obtained from Eq. (6), iterating on 
the nonlinear coefficients {Ai}, {Bi}, {Ci} until a specified convergence was attained. 

(ii) Given {@)}, {u;.(“‘} was obtained by means of numerical differentiation. 
(iii) Given {his}, uj”).(k) was obtained by recursively differentiating Eq. (1) 

analytically: 
U(n’ = -(pu’ + Q)M’, n = 2, 3 ,..., N + 1. (9) 
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Initially, a uniform distribution {yi} was assumed (8, = 6,). Successive distribu- 
tions { $)} were then obtained by 

(iv) computing Tik-l) from Eq. (5) and (aTJ+-J+l), etc., from the partial 
derivatives of Eq. (5) with respect to yiel , etc., and 

(v) setting {Tik;‘} = 0 and applying Eq. (8). 
Since {@‘} changes as {yi”} changes, it was found that computational efficiency 
is promoted if the prescribed precision of the “converged” values 

$4 > / uyz) _ ufd,(z-l) ~/u~w), 

where (1) denotes iterate number in performing step (i), is increased with increasing 
(k). Typically, 0 = 10-l, 10-2, 10-3, 10W4, 10-5, etc., as k = 1, 2, 3, 4 ,..., proved 
to be near optimal. 

The ultimate accuracy attainable by the method depends, to first order on errors 
in {zQ’}. For the illustrative examples presented below, ui’ was extracted from a 
five-point Lagrangian interpolating polynomial [5] at node points i = 3 through 
Z - 1, with ui’ at i = 1,2, and Z being obtained from Taylor series extrapolation. 
For example, at i = 2 

u2' 

N (- 1)” 8&p) 
= us’ + 1 

n=l n! 

In addition, the accuracy of the method is curtailed when the (nonlinear) coefficient 
P(u, JJ) is of such form as to introduce additional truncation errors. This is 
illustrated below for Case III for the integrodifferential equation 

d + (a + b j: u dy) u’ = 0. 

(Although such truncation errors could in principle be incorporated in the method, 
this was not done because the coefficient matrix for the set of algebraic Eqs. (7) 
would not, in general, remain tri-diagonal.) 

RESULTS AND DISCUSSION 

To illustrate the method, Eq. (l), subject to the boundary conditions (2), was 
solved for the following special cases: 

I. P=4, Q = 0, 
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II. P = constant; Q = ye-b’/(l+m), p = 10, 01 = 0.25, 

A. P = 4, y = 0.5e1° > 
B. P = 0, y = 0.5e1°, 

C. P = -4, y = 0.5e1°, 

D. P = 4, y = elO, 

III. P = a@ + y Jo UC+>, Q = 0, 

A.ol= 1, B = 0, y = 18, 
B. 01 = 1.125, B = 5, y = 2.25, 

c. 01 = 4.03, p = -0.75, y = 8.06. 

With u(1) = 1, Cases I and I1 represent, for example, energy transfer in a Couette 
flow [6] with mass injection where, for Case II, the injected fluid undergoes a zero 
th- order chemical reaction with the rate of reaction exhibiting an Arrhenius type 
dependence [7] on the dimensionless temperature U. With u(1) + 1, Case III is 
representative of self-similar boundary layer flows [S]. 

In order to assess the relative accuracy and computational efficiency of the 
method, solutions to the above problems were also obtained for $ = 6, = 6 = l/1, 
i.e., for regular node spacing with (i) no corrections (Ti = 0 in Eq. (3)) and (ii) 
Taylor series corrections (Ti given by Eq. (5)). Whereas Fox [I] calculates {T,} by 
extracting the required (uy’> from high order differences of the (ui>, the procedure 
used here is to calculate {ui’> numerically and then obtain {u:“‘>, II = 2,..., N + 1, 
from Eq. (9). As well be seen, this has the advantage of enabling retention of more 
terms in Eq. (5) and, for the examples treated here, proves to be more accurate 
than the method of Fox, where the number of terms and the accuracy are limited 
by the number of internal points I - 1. Of course, the accuracy of the present 
methods is, as mentioned above, limited by numerical errors in calculating {ui’}. 
Where possible, solutions also were obtained by means of the fourth-order Runge- 
Kutta method. 

Numerical results for the illustrative examples are presented in Tables I-III-C, 
where results are shown for regular node spacing, with and without Taylor correc- 
tion, and for optimal node spacing. Values of ui were computed at nine interior 
node points except for Case II-D where nineteen nodes were used. A graph indi- 
cating the variation in the dependent variable is included for each case and the 
optimal node distribution is marked by vertical lines. The error Iisted for each 
method is defined as 

% Error = lOO(u - u,)/u, , 

where U, is the “exact” solution. For the nonlinear cases, U, was obtained using (i) 
fourth-order Runge-Kutta and (ii) Eq. (3) with successive reductions in mesh 
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TABLE I 

Results for u" + 4u' = 0; u(0) = 0, u(1) = 1 

Regular Node Spacing 

No Correction Taylor Correction" 

Y U % Error U 

I 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 
- 

0.339216 

0.565360 

0.716122 

0.816631 

0.883636 

0.928307 

0.958087 

0.977940 

0.991176 

1.008 0.335834 

0.787 0.560949 

0.601 0.711847 

0.447 0.812997 

0.322 0.880800 

0.222 0.926249 

0,144 0.956714 

0.082 0.977135 

0.036 0.990824 

% Error 

8.8x10-4 

6.9 

5.3 

3.9 

2.8 

2.0 

1.3 

7.3x10-5 

3.2 

Optimal 

Node Spacingb 

Y U X Error 

0.158967 0.479303 1.7x10-l4 

0.295937 0.706817 1.2x10-l4 

0.416295 0.825972 3.4x10-l5 

0.523653 0.893242 9.3x10-l5 

0.620557 0.933542 1.6x10-l4 

0.708869 0.958872 1.7~10-'~ 

0.789993 0.975439 1.4x10-l4 

0.865013 0.986643 9.8x10-l5 

0.934787 0.994439 2.8x10-l5 

Remarks 

u N = 13, k = 5 

b N = 20, k = 6 
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TABLE II-A 

Results for u" + 4~' + 0.5 e 10 ,-10/(1+0.25u) ; u(0) = 0, u(1) = 1 

Regular Node Spacing Optimal 

No Correction Taylor Correction" Node Spacingb 

Y U % Error U X Error Y U % Error 

3.1 0.686258 3.34 0.664048 4.3x10-4 0.181978 1.028592 2.5x10-4 

3.2 1.125742 3.18 1.091087 3.6 0.334546 1.395574 1.4 

3.3 1.381268 2.94 1.341834 2.7 0.456912 1.480301 1.1 

3.4 1.497352 2.61 1.459276 2.5 0.558775 1.457082 6.2~10-~ 

0.5 1.511251 2.20 1.478763 2.0 0.647414 1.392628 5.7 

0.6 1.455851 1.73 1.431060 1.8 0.727145 1.313521 5.3 

0.7 1.358846 1.25 1.342041 1.1 0.800636 1.231114 5.0 

0.8 1.241570 0.79 1.231849 8.9x1O-5 0.869700 1.150342 4.6 

0.9 1.118872 0.37 1.114780 7.2 0.935730 1.073164 3.4 

Remarks 

u N=9,k=6 

b N=8,k=4 
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TABLE II-B 

Results for u" + 0.5 e 10 e-10/(1+0.25u) = 0; u(o) = 0, u(,) = , 

127 

Regular Node Spacing Optimal 

No Correction Taylor Correction' Node Spacingb 

Y u ;: Error U % Error Y U % Error 

0.1 0.193173 0.073 0.193032 -1.1x10-4 0.104292 0.201163 3.oxlo-5 

0.2 0.378420 0.096 0.378055 -1.0 0.201116 0.380061 2.9 

0.3 0.551801 0.120 0.551138 -1.0 0.292918 0.539373 2.8 

0.4 0.708376 0.142 0.707372 -9.6x1O-5 0.381640 0.680200 2.7 

0.5 0.842441 0.158 0.841115 -8.9 0.469070 0.802508 2.5 

0.6 0.948029 0.163 0.946483 -7.6 0.557217 0.905245 2.2 

0.7 1.019648 0.154 1.018080 -5.9 0.648992 0.986074 1.6 

0.8 1.053147 0.126 1.051825 -4.8 0.750647 1.040085 <1.0x10-6 

0.9 1.046458 0.075 1.045672 -1.9 0.906860 1.043783 l.2xlo-5 

Remarks 

U u N=8,k=5 

b N=8,k=5 
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TABLE II-C 

Results for u" - 4u' t 0.5 e" e-10'(1+o'25u) = 0; u(O) = 0, u(1) = 1 

Y - 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 
- 

Regular Node Spacing 

No Correction II Taylor Correction' 

U 

0.023393 

0.051857 

0.087451 

0.133100 

0.192950 

0.272823 

0.380796 

0.527849 

0.728376 

U 

i; Error U '; Error Y 

-1.60 0.023771 -5.8~10-~ 0.060836 

-1.63 0.052717 -5.6 0.126135 

-1.64 0.088903 -5.1 0.196624 

-1.59 0.135249 -4.4 0.273232 

-1.49 0.195867 -3.6 0.357188 

-1.33 0.276491 -2.4 0.450177 

-1.10 0.385022 -1.4 0.554639 

-0.80 0.532102 -1 .o 0.674426 

-0.43 0.731540 +6.8x10 -5 0.816635 

T Optimal 

Node Spacingb 

Remarks 

U 

0.013937 

0.030766 

0.051636 

0.078361 

0.113932 

0.163567 

0.236993 

0.354075 

0.561229 

N = 11, k = 6 

b N=8,k=4 

% Error 

-2.1x10-5 

-1.7 

-1.9 

-2.6 

-3.3 

-3.9 

-4.7 

-5.4 

-6.6 

I 
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TABLE II-D 

Results for u" f 4u' + e 10 e-10/(1+0.25u) = o; u(o) = o, u(,) = , 

Regular Node Spacir; 

No Correction 

‘9 

Taylor Correction' 

Optimal 

Node Spacing' 

Y UXlO -3 % Error UXlO -3 % Error -3 
Y UXlO % Error 

0.1 1.266966 0.487 1.260887 5.1~10-~ 0.184950 1.859920 6.4~10-~ 

0.2 1.939262 0.414 1.931322 2.7 0.339118 2.230741 2.9 

0.3 2.211036 0.367 2.202973 2.0 0.472413 2.093691 1.7 

0.4 2.214210 0.337 2.206814 1.8 0.589758 1.769894 9.Ox1O-4 

0.5 2.037570 0.320 2.031128 1.3 0.694263 1.382967 4.3 

0.6 1.740850 0.321 1.735394 1.9 0.787536 0.987342 -1.0 

0.7 1.364359 0.337 1.359813 2.3 0.868861 0.617315 -8.3 

0.8 0.935644 0.404 0.931907 3.1 0.933456 0.313456 -2.4~10-~ 

0.9 0.474534 0.630 0.471590 5.9 0.976421 0.110112 -3.3~10-~ 

Remarks 

u N = 11, k = 6 

b N = 11, k = 13 

581/9/I-9 
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TABLE III-A 

Y 
Results for u" + 18 

J- 
udy u' = 0; u(0) = 0, u(l) = 0.998980 

0 

I No Correction 

0.3 0.577837 0.535 
I 

Regular Node Spacing Optimal 

Taylor Correction' Node Spacingb 

U % Error Y U % Error 

0.198931 -3.6~10-~ 0.127208 0.252672 1.8~10-~ 

0.393766 -3.4 0.228416 0.447168 1.5 

0.574745 -3.2 0.321324 0.610337 1.2 

0.728967 -2.9 0.413346 0.746920 8.9x1O-4 

0.846029 -2.6 0.642713 0.945503 1,.4 

0.923316 -2.3 0.759850 0.981448 -4.1~10-~ 

0.966948 -1.6 0.842457 0.992381 -3.8 

0.987788 -1.0 0.905990 0.996438 -2.1 

0.996159 -2.6~10-~ 0.957263 0.998164 -8.2~10-~ 

0.4 0.733417 0.607 

I I 
0.5 0.851182 0.606 

0.6 j 0.928146 IO.521 

3.9 IO.996936 IO.078 

U c( N=9,kz6 

b N = 

Y 

12, k = 27 
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TABLE III-B 

Y 
Results for u" + 1.125(5 + 2.25 

/ 
udy)u' = 0; u(0) = 0, u(l) = 0.999020 

0 

131 

Regular Node Spacing Optimal 

No Correction Taylor Correction" Node Spacing' 

Y U ii Error U ': Error Y U TJ Error 

0.1 0.454987 2.13 0.445545 7.3x10-3 0.226362 0.743341 9.0x10-3 

0.2 0.708519 1.54 0.697787 5.4 0.391308 0.910717 4.2 

0.3 0.847536 1.07 0.838587 4.0 0.518840 0.962204 2.2 

0.4 0.922140 0.708 0.915683 2.8 0.621986 0.981684 1.2 

0.5 0.961203 0.444 0.956976 1.9 0.708160 0.990209 6.8x10-4 

0.6 0.981122 0.261 0.978576 1.2 0.781906 0.994365 3.9 

0.7 0.991004 0.142 0.989602 8.0x10-4 0.846199 0.996566 2.2 

0.8 0.995770 0.069 0.995092 4.0 0.903072 0.997812 1.1 

0.9 0.998003 0.025 0.997758 1.8 0.953981 0.998555 4.5~10-~ 

Remarks 

U it N = 11, k = 6 

6 N = 19, k = 22 
1 - --------.--- l 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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TABLE III-C 

Y 
Results for u" + 4.03(-0.75 + 8.06 

/ 
udy)u' = 0; u(0) = 0, u(1) = 0.999030 

0 

- 

- 

Y 
- 

3.1 

1.2 

1.3 

I.4 

3.5 

1.6 

I.7 

I.8 

I.9 
- 

Regular Node Spacing 

No Correction 

U L Error 

0.087385 -0.692 

0.204249 -0.381 

0.353278 -0.026 

0.526830 0.334 

0.702087 0.637 

0.847053 0.795 

0.939720 0.731 

0.982849 0.471 

0.996449 0.179 

U 

Taylor Correction" 

U 

0.087977 

0.204990 

0.353299 

0.524976 

0.697525 

0.840246 

0.932783 

0.978155 

0.994638 

% Error 

-1.9x10-2 

-2.0 

-2.0 

-1.9 

-1.7 

-1.5 

-1.3 

-9.8x1O-3 

-3.4 

Optimal 

Node Spacingb 

Y 

0.060916 

0.131065 

0.279729 

0.385580 

0.481560 

0.575487 

0.785999 

0.884378 

0.950600 

Remarks 

U 

0.050457 

0.121014 

0.320966 

0.499600 

0.667194 

0.809631 

0.974106 

0.993234 

0.997663 

N = 11, k = 6 

h N = 19, k = 35 

$ Error 

5.2~10-~ 

5.3 

4.8 

4.3 

3.5 

2.6 

5.3x10-4 

5.3x10-5 

2.4~10-~ 

1 
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spacing 6 and tightening of error tolerances until both (i) and (ii) agreed to nine 
significant figures. To avoid roundoff errors, the computations were carried out in 
double precision. The number of terms, N, retained in the series for Ti (Eq. (5)) and 
the number of iterations needed to converge the solution, (k), are also presented. 

Case I. For this case, a closed form solution exists; furthermore, it is seen 
from Eqs. (5), (7), and (8) that the solution algorithm for extracting the optimal 
distribution is homogeneous in ui’. Such is not the case for the Taylor series 
correction method where, as may be seen from Eq. (5), errors in Ti are, to first 
order, proportional to errors in ui’. This is verified in Table I where the results for 
the optimal node method are seen to be exact (within roundoff errors). Both 
methods converged rapidly, (k) being 6 in the former case and 5 in the latter. 

The relative computational efficiencies of the methods are depicted in Fig. 1, 
where execution times are plotted as a function of percent error for (i) the standard 

I I Illl1ll I 0 I I Illllll , , , , , , , I I I llllll 

10-j 10-4 10-3 10-Z 10-l 

100 ju Uei/Ue 

FIG. 1. Comparison of computational time for equal and optimal node distribution-Case I. 

finite difference procedure without corrections, (ii) the Taylor series correction 
method, and (iii) the optimal node method. We note that the execution times for 
the Taylor and optimal node methods are comparable and increase very slightly 
with increasing accuracy, whereas for the standard finite difference method execu- 
tion time increases very rapidly as the error is decreased below 0.1%. 

5811911-9* 
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Case II. For this case, the effects of a nonlinear source term (Q = ye-0/(1+a7L)) 
are investigated for various “blowing” parameters (P = 4, 0, -4). As discussed 
above, the ultimate accuracy attainable by the method is now limited by 
inaccuracies in ui‘. However, as shown in Tables II-A-II-C, the results for the 
optimal method are significantly better than those for the Taylor series method. 
The reason for this is shown in Fig. 2, where errors in the optimal method are seen 
to be insensitive to small errors in the precise location of the optimal distribution. 
(Shown in Fig. 2 is Case II-A, similar trends being exhibited by the other cases.) 

0.1 

5 

0.1 

0 

FIG. 2. 

yopt = 0.8006448 

! I I 
1 

U 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

.- 

J'mt 
= G.5587800 

I I I 
1 I 

1 0.1 0.2 0.3 0.4 0.5 0.6 n.7 

Yopt = 0.1819799 

! I I 
I 

1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

lwY,pt - Y)/Y 
wt 

Effect of deviations from optimal node point distribution on accuracy. 

Also of interest are the effects of the parameters of the problem on the distribu- 
tion of node points. As may be seen from the figures in Tables II-A and II-C, 
“suction” (P = 4) tends to move the distribution out whereas “blowing” (P = -4) 
tends to move points in. For P = 0 (Table II-B), however, the distribution is more 
or less regular with the exception of a large step about the maximum value of U. 
Additionally, we note that the presence of the term Pu’ is not required to obtain an 
optimal distribution. 

Not shown are results which were obtained using fourth-order Runge-Kutta. 
For the same accuracy, Runge-Kutta (as is well known) is more efficient than the 
methods cited above. However, it also is known that shooting techniques, such as 
Runge-Kutta, fail when gradients become large [9]. Such is the case for problem 
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II-D, where, for a two-fold increase in y, the solution assumes the form shown in 
Table II-D. (The dramatic change in the nature of the solution with increasing y is 
characteristic of so called “multiple” steady-state problems [IO].) Despite reason- 
able efforts to implement Runge-Kutta for this case (even to the extent that the 
initial “guessed” value of u’(0) was input correct to five significant figures), it 
failed to converge. 

Computational efficiency of the various methods is compared for Case II-A in 
Fig. 3. The results of this nonlinear problem are similar to those obtained for 
Case I in that execution times for the optimal node and Taylor series correction 
methods are comparable, with the standard finite difference method requiring 
substantially longer times to achieve accuracies better than 0.5 %. 

2.0 - 

1.8 - 

: 
p,eSular Node Spacing--No CorrectlOnm -* 

2 1.0 - 
: 
e LI1 0.8 - Optinal Node Spacing 

3 I , I I I I / I I I , I I I I I I I III/Ill / I ,,,,I, 

10-4 10-3 10-Z 10-l llJO 

100 iu - UeI/Ue 

FIG. 3. Comparison of computational time for equal and optimal node distribution-Case 
II-A. 

Case III. For this case, the effects of a nonlinear coefficient P on the solution 
method are investigated. An additional feature of the case is that the nonlinearity 
introduces further truncation error; this would not be the case, for example, if P 
were u itself. (As mentioned earlier, the solution procedure could be modified to 
include such errors; however, considering the quadrature involved in evaluating P 
it is evident that to do so would require that a full matrix be inverted to yield the 
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optimal node distribution.) Despite the added error, the results (Tables UT-A- 
III-C) are still uniformly excellent. 

Of additional interest are the node point distributions for the optimal method, 
particularly the distribution for the classical Blasius problem (Case III-A). As 
might be expected, the search for so distorted a node distribution was highly non- 
linear, stability requiring that the values of yj”) - yik+l) be damped at each iterate. 
This is reflected in the larger values of(k) required to achieve convergence. 

CLOSING REMARKS 

Of practical concern in solving two-point boundary value problems by means 
of finite difference methods is the extraction of accurate gradients at the bound- 
aries. This concern is accentuated in the present method where not only is the 
node distribution coarse but, as may be seen for various cases in Tables I through 
III, node spacings near one or the other of the boundaries are relatively larger. 
Given {ui}, one could extract U’ at a boundary by means of numerical differentiation 
of the near wall data. For the results cited above, such a procedure would yield 
relatively inaccurate values. However, an important feature of the present method 
(which applies as well to the Taylor series approach) is that (more accurate) central 
difference expressions for U’ at interior node points may be extrapolated to a bound- 
ary using Eq. (10). 

The above observations are summarized in Table IV where values of u’(O), as 
obtained by differentiating a parabolic fit to the values u1 , u2 , and uy , are com- 
pared with those obtained using Eq. (10). If greater precision is required, one 

TABLE IV 

Comparisons of Methods for Extracting the Wall Gradient, u’(O) 

Taylor Correction Optimal Node Spacing 
Parabolic Fit Taylor Extrapolation Parabolic Fit Taylor Extrapolation 

Case 

II-A 

II-B 

II-C 

II-D 

III-A 

III-B 

III-C 

u’(O) ‘? Error u’(O) ‘A Error u’(O) % Error u’(O) ‘A Error 

7.8255 -3.5 8.09719 -0.129 7.4185 -8.5 8.10973 0.025 

1.9704 0.6 1.95975 -0.002 1.9709 5.7 1.95960 -0.010 

0.2118 -2.4 0.21706 -0.020 0.2153 -0.8 0.21709 -0.006 

15561. -4.5 16374.9 0.294 14229. -12.7 16353.4 0.346 

1.9688 -1.2 1.99066 -0.086 2.0222 1.5 1.98892 -0.158 

5.4220 - 7.0 5.80800 -0.338 4.5965 -21.1 5.78301 -0.770 

0.7346 -2.6 0.75570 0.153 0.7458 -1.2 0.75320 -0.178 
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could of course re-solve Eq. (1) in the interval between y = 0 and the first interior 
node point, assigning the numerical value of u2 as exterior boundary condition and 
renormalizing the independent variable. For example, when this was done for 
Case III-B, the error in u’(0) was reduced from -0.77 % to -0.0015 %. 

Although the method has been applied here to ordinary differential equations, it 
could in principle be applied to “marching” problems. Consider, for example, the 
simple diffusion equation 

a*jat = ayb/ap, 

where time-dependent optimal distributions ( yi} are sought. The higher-order 
derivatives P+jayn required to implement the method would be obtained by 
recursively differentiating the above equation 

an*jay = a(a+2*jay+yat, 

where, now, time derivatives of the spatial derivatives would be required. Further- 
more, the optimal distribution varies with time and it would be necessary to 
interpolate spatially values of the dependent variable as well as its derivatives with 
respect toy at upstream stations. However, for cases in which { yi,opt} varies weakly 
with time, the method may show computational advantage. 
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